
Diversified Top-k Keyword Query Interpretation on

Knowledge Graphs

Ying Wang, Ming Zhong*, Yuanyuan Zhu, Xuhui Li, and Tieyun Qian

State Key Laboratory of Software Engineering

Wuhan University, Wuhan 430072, China

{wysklse,clock,yyzhu,lixuhui,qty}@whu.edu.cn

Abstract. Exploring a knowledge graph through keyword queries to discover

meaningful patterns has been studied in many scenarios recently. From the per-

spective of query understanding, it aims to find a number of specific interpreta-

tions for ambiguous keyword queries. With the assistance of interpretation, the

users can actively reduce the search space and get more relevant results.

In this paper, we propose a novel diversified top-k keyword query interpreta-

tion approach on knowledge graphs. Our approach focuses on reducing the re-

dundancy of returned results, namely, enriching the semantics covered by the

results. In detail, we 1) formulate a diversified top-k search problem on a sche-

ma graph of knowledge graph for keyword query interpretation; 2) define an ef-

fective similarity measure to evaluate the semantic similarity between search

results; 3) present an efficient search algorithm that guarantees to return the ex-

act top-k results and minimize the calculation of similarity, and 4) propose ef-

fective pruning strategies to optimize the search algorithm. The experimental

results show that our approach improves the diversity of top-k results signifi-

cantly from the perspectives of both statistics and human cognition. Further-

more, with very limited loss of result precision, our optimization methods can

improve the search efficiency greatly.

Keywords: Diversification; Keyword Query Interpretation; Top-k Search;

Knowledge Graph

1 Introduction

1.1 Motivation

Recently, keyword search is well recognized as a popular and effective approach to

acquire knowledge from the large-scale knowledge graphs, such as DBPedia [3], Ya-

go [8], Freebase [4], Probase [11], etc. However, keyword search suffers from a trade-

off between expressiveness and ease-of-use, which results in the ambiguities of users’

information needs. Therefore, keyword query interpretation is proposed for predicat-

ing the most relevant query semantics to users’ information needs. As a result, the

* Corresponding author.

2 Y. Wang, M. Zhong et al.

users can still issue keyword queries initially, and then, they will formulate more ex-

pressive and relevant queries from the returned intermediate results, thereby narrow-

ing the search space and improving the quality of final results.

The existing keyword query interpretation approaches [12-15] mainly focus on im-

proving the relevance of results and the efficiency. There is still a lack of discussion

of an important property of interpretation results, namely, diversity. Unfortunately,

according to our observation on real-world knowledge graphs, only considering the

relevance of results often leads to lots of similar results which are redundant to the

user and also may not reach the different user’s intention. That is because the most

relevant results mostly have the same nodes, edges and even structures that are pre-

ferred by scoring functions. Let us consider the following example.

Example 1. Given a keyword query “London, Paris” on DBPedia, the top-4 rele-

vant results with and without diversification with respect to some specific scoring

function and similarity function are shown in Figure 1. Each tree is an interpreted

result, and can be seen as a graph query actually. Their leaf nodes contain the two

keywords respectively. Moreover, the nodes in different colors represent different

classes in DBPedia. Intuitively, the four trees on the top (without diversification) are

very similar to each other. They are all rooted at the same class node, and almost

share the same classes. In contrast, the four trees on the bottom (with diversification)

are quite different from each other, and demonstrate various relationships between

“London” and “Paris”, such as biological relationship between two plants, soccer

player who served in two clubs, or geographic relationship between two locations.

In order to make the interpretations of a keyword query meet the various infor-

mation needs of different users, we need to diversify the results.

1.2 Related Work

Keyword Query Interpretation. It is a popular research topic in the communities

of semantic web, information retrieval and database. There are generally two kinds of

methodologies. The first is to map the keyword query to semantic patterns precom-

puted from the graph. For example, Pound and etc. [5,6] generates a list of possible

elements in the knowledge graph for each keyword phrase in the query, sorts the ele-

ments by syntactic similarity, and lastly processes the sorted lists by using a variation

of Threshold Algorithm. The second is to search the relationships between keywords

in the schema graph and compose patterns. For example, Tran and etc. [9,10] models

the interpretation results as subgraphs of the schema graph that connect all keywords

in the query. The top-k results ranked with respect to relevance are returned. Overall,

the current research works try to find the best individual results but not the best result

set.

Diversified Top-k Search. It has been studied in many applications recently, such

as [16-18]. The most straightforward solutions (e.g., [1,2]) assume the rankings of all

search results are known in advance, and diversified search algorithms are given to

output k results with respect to score and similarity. However, graph search usually

returns a very large number of results, so that it is not feasible to rank all results in the

context of this paper. Then, Qin et al. [7] propose general frameworks to handle the

Diversified Top-k Keyword Query Interpretation on Knowledge Graphs 3

Fig. 1. An example of top-k interpretations with and without diversification.

diversified top-k search problem, which can stop early without exploring all search

results. But it cannot be directly applied to solve our keyword query interpretation

problem due to the different problem definition.

1.3 Our Contributions

In this paper, we propose a novel diversified top-k keyword query interpretation ap-

proach to address the redundancy problem of interpreted results, so that the top-k

results could cover richer semantics and satisfy different users. Our approach follows

the line of [10] to search for semantic patterns on a schema graph of knowledge graph

for a given keyword query, and tries to return k patterns that have the most possible

high scores and meanwhile are not similar to each other.

Our main contributions are as follows.

 We reasonably formulate a diversified top-k search problem on a schema graph of

knowledge graph for keyword query interpretation.

 We define an effective similarity measure to evaluate the semantic similarity be-

tween search results.

 We present an efficient top-k algorithm to address the problem. The algorithm can

guarantee to return the exact top-k results, and minimize the calculation of similari-

ty. Moreover, two heuristic pruning strategies are proposed to improve the search

efficiency with possible losses of exact top-k results.

 We perform experiments on DBPedia. The results show that our approach im-

proves the diversity of top-k results effectively from the perspective of both statis-

tics and human cognition. Meanwhile, with a small loss (on average 3%) of result

precision as trade-off, the pruning strategies reduce the response time dramatically.

4 Y. Wang, M. Zhong et al.

The rest of this paper is organized as follows. Section 2 introduces the background

and problem definition. We present our similarity measure and search algorithm in

Section 3 and 4 respectively. Section 5 shows the experimental results. Lastly, we

conclude in Section 6.

2 Preliminaries

2.1 Data and Query Models

Knowledge Graph. Without loss of generality, we simply model a knowledge

graph as 𝐺 = (𝑉, 𝐸, 𝐻, 𝐾), where 𝑉 is a set of nodes, 𝐸 = 𝑉 × 𝑉 is a set of edges

between the nodes, 𝐻 is a set of classes of nodes, and 𝐾 is a set of keywords con-

tained by the nodes. For each node 𝑣 ∈ 𝑉 , we denote by 𝑐𝑙𝑎𝑠𝑠(𝑣) ∈ 𝐻 and

𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑣) ⊂ 𝐾 its class and set of keywords, respectively.

Schema Graph. Given a data graph 𝐺, let its schema graph 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠), where 𝑉𝑠

is a set of class nodes, one for each class in 𝐻, and 𝐸𝑠 = 𝑉𝑠 × 𝑉𝑠 is a set of edges be-

tween the class nodes. For a node 𝑣 ∈ 𝑉 and a class node 𝑣𝑠 ∈ 𝑉𝑠, 𝑣 ∈ 𝑣𝑠 if and only if

𝑐𝑙𝑎𝑠𝑠(𝑣) ⊂ 𝑐𝑙𝑎𝑠𝑠(𝑣𝑠), so that 𝑉𝑠 is actually a partition of 𝑉 with respect to the classes

of nodes. Moreover, we denote by 𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑣𝑠) ⊂ 𝐾 the union of keywords con-

tained by all nodes of 𝑣𝑠 , namely, 𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑣𝑠) = ⋃ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑣)𝑣∈𝑣𝑠
. Lastly, an

edge (𝑣𝑠, 𝑢𝑠) ∈ 𝐸𝑠 if and only if there exist nodes 𝑣 ∈ 𝑣𝑠 and 𝑢 ∈ 𝑢𝑠 such that

(𝑣, 𝑢) ∈ 𝐸.

Keyword Query. A keyword query 𝑄 ⊆ 𝐾 is simply a set of keywords. In particu-

lar, we call a class node 𝑣𝑠 ∈ 𝑉𝑠 keyword node if and only if there exists a keyword

𝑞 ∈ 𝑄 such that 𝑞 ∈ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑣𝑠).

Pattern Tree. Given a schema graph 𝐺𝑠, we interpret a keyword query 𝑄 to a set

of pattern trees, where each node is an embedding of a class node on the schema

graph and the leaf nodes are the keyword nodes of each keyword in 𝑄, the root node

is the same class node in the end of each path. Formally, for a pattern tree 𝑇 =
(𝑉𝑡 , 𝐸𝑡) , there is a mapping 𝑓: 𝑉𝑡 ↦ 𝑉𝑠 . For each edge (𝑣𝑡 , 𝑢𝑡) ∈ 𝐸𝑡 we have

(𝑓(𝑣𝑡), 𝑓(𝑢𝑡)) ∈ 𝐸𝑠 . Moreover, a pattern tree is comprised of |𝑄| keyword-to-root

paths called search paths. For a search path 𝑃𝑞 = 𝑣𝑡1/ …/𝑣𝑡𝑛 outgoing from the key-

word 𝑞 ∈ 𝑄, we have 𝑞 ∈ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑓(𝑣𝑡1)).

2.2 Scoring Metrics

Interpreting a keyword query by searching on a schema graph usually returns a huge

number of results due to the explosive combinations of nodes and edges, most of

which are irrelevant. To address the problem, existing keyword query interpretation

works have considered a variety of scoring metrics in order to evaluate how well an

interpreted result matches the user’s information needs. For example, some widely-

used metrics are introduced as follows.

Compactness. In the context of keyword search over graphs, a basic assumption is

that more tightly-connected nodes comprise a more meaningful answer. For example,

Diversified Top-k Keyword Query Interpretation on Knowledge Graphs 5

the answer trees with less edges or levels are ranked higher. Thus, the pattern trees

comprised of shorter search paths are preferred.

Popularity. For each node in the schema graph, we can compute a popularity score

by means like PageRank. Like web page ranking, pattern trees that contain more pop-

ular nodes should be ranked higher.

Relevance. As a common measure in IR, TF/IDF can also be used to evaluate the

relevance of pattern trees to the given keywords. For a keyword node, we can com-

pute an initial relevance score.

For a search path 𝑃, we denote by 𝑠𝑐𝑜𝑟𝑒(𝑃) its score that incorporates path length,

popularity of nodes on the path, relevance of keyword node, and even other metrics.

The scoring function is featured by 1) the higher the score, the better the search path,

and 2) for a search path 𝑃′ = 𝑃/ …/𝑣 extended from another search path 𝑃, we have

𝑠𝑐𝑜𝑟𝑒(𝑃′) < 𝑠𝑐𝑜𝑟𝑒(𝑃). The details of scoring function are omitted because it is not

the focus of this paper.

Based on the scoring function of search path, we evaluate the score of a pattern tree

as follows.

 𝑠𝑐𝑜𝑟𝑒(𝑇) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑃)𝑃∈𝑇 (1)

Obviously, the scoring function of pattern tree is monotonic in the context of

search algorithms, thereby facilitating efficient top-k search algorithm and effective

search path pruning during the search (see Section 4).

2.3 Problem

Consider a set of results 𝑆 = {𝑇1, 𝑇2, … }. For each 𝑇𝑖 ∈ 𝑆, the score of 𝑇𝑖 is denoted as

𝑠𝑐𝑜𝑟𝑒(𝑇𝑖). Given two results 𝑇𝑖 , 𝑇𝑗 ∈ 𝑆, the similarity between them is denoted as

𝑠𝑖𝑚(𝑇𝑖 , 𝑇𝑗) with 0 ≤ 𝑠𝑖𝑚(𝑇𝑖 , 𝑇𝑗) ≤ 1. The parameter τ is defined as the threshold to

determine whether two pattern trees are similar. When 𝜏 ≤ 𝑠𝑖𝑚(𝑇𝑖 , 𝑇𝑗) ≤ 1 , 𝑇𝑖 is

similar to 𝑇𝑗, and vice versa. The definition of the diversified top-k results is as fol-

lows.

Definition 1 (Diversified Top-k Results). Given an integer k with 1 ≤ 𝑘 ≤ |𝑆|,
the diversified top-k results of 𝑆 is 𝑆𝑘 such that

1. 𝑆𝑘 ⊆ 𝑆 and |𝑆𝑘| ≤ 𝑘;

2. for any two results 𝑇𝑖 , 𝑇𝑗 ∈ 𝑆𝑘 with 𝑇𝑖 ≠ 𝑇𝑗, we have 𝑠𝑖𝑚(𝑇𝑖 , 𝑇𝑗) < 𝜏, namely, they

are not similar to each other;

3. for each result 𝑇𝑖 ∈ 𝑆𝑘, if 𝑇𝑗 ∈ 𝑆 and 𝑠𝑐𝑜𝑟𝑒(𝑇𝑗) > 𝑠𝑐𝑜𝑟𝑒(𝑇𝑖), we have either 𝑇𝑗 ∈

𝑆𝑘 or ∃𝑇𝑙 ∈ 𝑆𝑘 such that 𝑠𝑐𝑜𝑟𝑒(𝑇𝑙) > 𝑠𝑐𝑜𝑟𝑒(𝑇𝑗) and 𝜏 ≤ 𝑠𝑖𝑚(𝑇𝑙 , 𝑇𝑗) ≤ 1.

Example 2. Figure 2 shows an example result set S= {𝑇1, 𝑇2, … , 𝑇7} and the corre-

sponding 𝑆𝑘 with k = 4. Each node in the figure represents a pattern tree, and the edg-

es indicate that the two connected pattern trees are similar. Moreover, the labels of

nodes are their scores. The diversified top-k results 𝑆𝑘 includes four nodes 𝑇3, 𝑇1, 𝑇6

and 𝑇7, which are sorted by their scores. For 𝑇2 and 𝑇5, their scores are just too low.

For 𝑇4, although its score is higher than 𝑇6 and 𝑇7, it is not qualified for top-k because

6 Y. Wang, M. Zhong et al.

.

Fig. 2. An example of diversified top-k results.

it is similar to 𝑇3 and 𝑇1. Thus, we diversify the top-k results by abandoning 𝑇4 and

importing 𝑇6 and 𝑇7.

With Definition 1, the problem addressed in this paper is defined as follows.

Problem. Given a schema graph 𝐺𝑠 and a keyword query 𝑄, let 𝑆 be the set of pat-

tern trees interpreted from 𝑄 on 𝐺𝑠 , compute the diversified top-k results 𝑆𝑘 of 𝑆

without generating the whole 𝑆.

3 Similarity Measure

In order to diversify the pattern trees, we need to measure the similarity between

them.

Given a keyword query 𝑄, each pattern tree returned will have |𝑄| search paths

outgoing from each keyword in 𝑄. We firstly abstract each search path as a feature

vector. Each feature represents the frequency of a class in the path. Given a schema

graph 𝐺𝑠, the dimensionality of feature vector is the number of classes, namely, |𝑉𝑠|.
Let 𝐹(𝑃) = (𝐼1, 𝐼2, …, 𝐼|𝑉𝑠|) be the feature vector of a search path 𝑃. We calculate 𝐼𝑖 as

follows.

 𝐼𝑖 =
𝑛𝑖

|𝑃|
 (2)

where |𝑃| is the total number of nodes on the path 𝑃 and 𝑛𝑖 is the number of nodes

that belong to the 𝑖-th class node of 𝑉𝑠 on the path.

Let 𝑃𝑞1 and 𝑃𝑞2 be two search paths outgoing from a keyword 𝑞 in two different

pattern trees. We use the angle cosine formula to calculate the similarity of the two

paths.

 𝑠𝑖𝑚(𝑃𝑞1，𝑃𝑞2) =
𝐹(𝑃𝑞1)∙𝐹(𝑃𝑞2)

|𝐹(𝑃𝑞1)|∗|𝐹(𝑃𝑞2)|
 (3)

Lastly, the similarity of two pattern trees is the mean of the similarity of all their

corresponding paths.

Diversified Top-k Keyword Query Interpretation on Knowledge Graphs 7

 sim(𝑇1, 𝑇2) =
∑ 𝑠𝑖𝑚(𝑃𝑞1,𝑃𝑞2)𝑃𝑞1∈𝑇1,𝑃𝑞2∈𝑇2

|𝑄|
 (4)

Intuitively, our similarity function measures how redundant the classes in two pat-

tern trees are. We do not consider the structural similarity measures like tree edit dis-

tance because of the high computational complexity and low additional profit.

4 Diversified Top-k Search

As mentioned above, we interpret a keyword query by searching its pattern trees on

the schema graph. In this section, we present the top-k search algorithm and optimiza-

tion techniques.

4.1 Search Algorithm

The main goal of our algorithm is to avoid the unnecessary similarity comparison,

which is relatively expensive and could be used very frequently during the search. It

is due to the fact that lots of pattern trees with low scores generated during the search

are unlikely to become the top-k results and thereby are not needed for similarity

comparison. Thus, our algorithm calculates the similarity for a pattern tree only when

its score meets a specific condition.

The pseudo codes are given in Algorithm 1. Let 𝐶 be the candidate set, which is a

priority queue of generated pattern trees in descending order of score, and 𝑆𝑘 be the

diversified top-k result set, which is also sorted in descending order of score. We de-

note by 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ the upper bound of score for the unseen results. For simplicity, the

function 𝑠𝑒𝑎𝑟𝑐ℎ() is used to traverse the schema graph and generate a set of pattern

trees in each iteration. We do not discuss how to schedule the graph traversals and

how to generate pattern trees here, which have been well studied by existing research

works like [10]. Obviously, the value of 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ will decrease gradually, and mean-

while, there will emerge pattern trees with higher scores than 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Then we com-

pute the similarity between the first emerged pattern tree and results in 𝑆𝑘. If it is not

similar to any result in 𝑆𝑘, it will be put into 𝑆𝑘. Otherwise, it will be abandoned di-

rectly. The algorithm terminates as soon as there are k results in 𝑆𝑘.

It is easy to prove that, each candidate popped up from 𝐶 is a pattern tree with the

highest score in all remaining results, so that it is certainly the next top-k result if it is

not similar to any existing top-k result. Thus, the correctness of Algorithm 1 is guar-

anteed.

Then we prove that we reduce the cost of similarity comparison to the minimum.

The pattern trees with a score higher than the last result in 𝑆𝑘 have to be compared

with the results in 𝑆𝑘 for identifying whether it is qualified for becoming one of top-k.

While, the similarity comparison of the rest pattern trees is totally unnecessary to find

the top-k results. Our algorithm only calculates the similarity while the score of the

pattern is higher than 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , which is always no less than the score of the last result

in 𝑆𝑘. So our algorithm minimizes the calculation of similarity.

8 Y. Wang, M. Zhong et al.

Algorithm 1. DivSA

Input: a schema graph 𝐺𝑠, a keyword query 𝑄

Output: 𝑆𝑘

1: 𝐶 ← ∅, 𝑆𝑘 ← ∅, 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ← 1;
2: while |𝑆𝑘| < 𝑘 do

3: 𝑡𝑒𝑚𝑝_𝑠𝑒𝑡 ← 𝑠𝑒𝑎𝑟𝑐ℎ(); //see prune details in Section 4.2
4: for each 𝑇 ∈ 𝑡𝑒𝑚𝑝_𝑠𝑒𝑡

5: put 𝑇 into the candidate set 𝐶;
6: end for

7: update 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ;
8: while 𝐶. 𝑝𝑒𝑒𝑘() > 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ and |𝑆𝑘| < 𝑘 do

9: 𝑇 ← the first candidate in 𝐶；

10: if 𝑇 is not similar to any results in 𝑆𝑘 do

11: put 𝑇 into 𝑆𝑘;

12: end if

13: end while

14: end while

Execution example. Consider the example in Figure 2. Table1 describes the

search procedure of DivSA. Initially, the value of 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is 1, and candidate set 𝐶

and diversified top-k results set 𝑆𝑘 are both empty. The pattern trees are generated by

calling 𝑠𝑒𝑎𝑟𝑐ℎ() iteratively. After two iterations, 𝑇1, 𝑇2, 𝑇3, 𝑇4 and 𝑇5 have been gen-

erated, and 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ decreases to 0.85. Then, the pattern tree 𝑇3 (𝑠𝑐𝑜𝑟𝑒(𝑇3) = 0.9 >

0.85) is moved to 𝑆𝑘 because it is certainly the best of all possible results. In the next

iteration, 𝑇6 is generated and 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ decreases to 0.75. Then, 𝑇1 (𝑠𝑐𝑜𝑟𝑒(𝑇1) = 0.8 >

0.75) becomes the best of rest results, and meanwhile it is not similar to 𝑇3, thereby

being moved from C to 𝑆𝑘 . When 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ decreases to 0.45, there are five pattern

trees in C, i.e., {𝑇4, 𝑇6, 𝑇7, 𝑇2, 𝑇5}, where 𝑇4, 𝑇6 and 𝑇7 have higher score than 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .

So they will be compared with the results in 𝑆𝑘 one by one. Lastly, 𝑇6 and 𝑇7 are

moved to 𝑆𝑘, and 𝑇4 is removed from 𝐶 because it is similar to 𝑇3.

Table 1. An example search procedure of DivSA.

iteration # new results 𝐶 𝑆𝑘 𝑢𝑛𝑠𝑒𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅

0 ∅ ∅ ∅ 1

1 {𝑇1, 𝑇2} {𝑇1, 𝑇2} ∅ 0.9

2 {𝑇3, 𝑇4, 𝑇5} {𝑇3, 𝑇1, 𝑇4, 𝑇2, 𝑇5} {𝑇3} 0.85

3 {𝑇6} {𝑇1, 𝑇4, 𝑇6, 𝑇2, 𝑇5} {𝑇3, 𝑇1} 0.75

4 {𝑇7} {𝑇4, 𝑇6, 𝑇7, 𝑇2, 𝑇5} {𝑇3, 𝑇1, 𝑇6, 𝑇7} 0.45

Diversified Top-k Keyword Query Interpretation on Knowledge Graphs 9

4.2 Optimization

In order to improve the search efficiency, we propose two rules to prune the search

path that is traversed by 𝑠𝑒𝑎𝑟𝑐ℎ() in each iteration.

Rule 1. Let 𝑚𝑞 be the maximum score of search paths outgoing from the keyword

𝑞 ∈ 𝑄，and 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 be the highest score of currently generated pattern trees. For a

new path 𝑃𝑞′ outgoing from a keyword 𝑞′ ∈ 𝑄 , we prune 𝑃𝑞′ if 𝑠𝑐𝑜𝑟𝑒(𝑃𝑞′) +

∑ 𝑚𝑞𝑞∈𝑄,𝑞≠𝑞′ < 𝜇 ∗ 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 .

The rationality behind Rule 1 is as follows. Firstly, we prove that the left side of

the inequality is the upper bound of score of pattern trees that contain the path 𝑃𝑞′. As

indicated in Section 2.2, the score of a search path composed of another path and a

new edge is certainly less than the original path. So the possibly best pattern tree that

contains the path 𝑃𝑞′ is composed of the current best paths outgoing from each key-

word. According to Equation (1), 𝑠𝑐𝑜𝑟𝑒(𝑃𝑞′) + ∑ 𝑚𝑞𝑞∈𝑄,𝑞≠𝑞′ is the upper bound.

The right side of the inequality is the estimated lower bound of score of top-k re-

sults. The lower bound is to prevent the similarity computation for results with very

low scores. The empirical parameter 𝜇 is used to balance the prune effect and result

completeness. It is possible to return fewer than k results when the value of 𝜇 is rela-

tively large. But in practice the returned results can be guaranteed to be complete by

carefully tuning the value of 𝜇.

Rule 2. For two search paths 𝑃𝑞 and 𝑃𝑞
′ outgoing from a same keyword 𝑞

with score(𝑃𝑞) > score(𝑃𝑞
′) , if 𝑠𝑖𝑚(𝑃𝑞 , 𝑃𝑞

′) = 1, we can prune the search path 𝑃𝑞
′

safely, and if 1 > 𝑠𝑖𝑚(𝑃𝑞 , 𝑃𝑞
′) > 𝜏, we will prune the search path 𝑃𝑞

′ with a probabil-

ity δ = 1 − cos−1 𝑠𝑖𝑚(𝑃𝑞 , 𝑃𝑞
′) / cos−1 𝜏.

First, assume that the pattern trees 𝑇𝑖 and 𝑇𝑗 contain 𝑃𝑞 and 𝑃𝑞
′ respectively. And the

other search paths of 𝑇𝑖 and 𝑇𝑗 are same. If score(𝑃𝑞) > score(𝑃𝑞
′) and s𝑖𝑚(𝑃𝑞 , 𝑃𝑞

′) =

1 , then score(𝑇𝑖) > 𝑠𝑐𝑜𝑟𝑒(𝑇𝑗) and 𝑠𝑖𝑚(𝑇𝑖 , 𝑇𝑗) = 1 . The similarity between two

paths is one do not mean that the two paths are exactly the same. Because the feature

vector of the path does not describe all details of the path. The similarity between

pattern trees is calculated entirely based on the similarity between paths. So we can

know 𝑠𝑖𝑚(𝑇𝑖 , 𝑇𝑗) = 1.The score of the pattern tree is the sum of the score of all its

paths. So we can know score(𝑇𝑖) > 𝑠𝑐𝑜𝑟𝑒(𝑇𝑗).

In one case, when 𝑇𝑖 is in the 𝑆𝑘 , because score(𝑇𝑖) > 𝑠𝑐𝑜𝑟𝑒(𝑇𝑗) and

s𝑖𝑚(𝑇𝑖 , 𝑇𝑗) = 1 , 𝑇𝑗 can’t be a result in the 𝑆𝑘. In another case, when 𝑇𝑖 is not a result

in the 𝑆𝑘, there must be a pattern tree 𝑇𝑥 in 𝑆𝑘 having higher score than 𝑇𝑖 and 1 >
𝑠𝑖𝑚(𝑇𝑖 , 𝑇𝑥) > 𝜏. Since the feature vector of all paths of 𝑇𝑖 and 𝑇𝑗 are the same, we can

know that 1 > 𝑠𝑖𝑚(𝑇𝑗 , 𝑇𝑥) > 𝜏. And obviously, score(𝑇𝑥) > score(𝑇𝑗). So 𝑇𝑗 can’t

be a result in the 𝑆𝑘.

In summary, 𝑇𝑗 is not needed in the final results. And that also means that 𝑃𝑞
′ is not

needed during the generation of pattern trees. Because if there is any pattern tree con-

taining 𝑃𝑞
′ , there is always another pattern tree containing 𝑃𝑞 making the previous one

useless. So we can prune the search path 𝑃𝑞
′.

10 Y. Wang, M. Zhong et al.

When 1 > 𝑠𝑖𝑚(𝑃𝑞 , 𝑃𝑞
′) > 𝜏 , δ is a good simulation of the possibility of 1 >

𝑠𝑖𝑚(𝑇𝑗 , 𝑇𝑥) > 𝜏(According to the preceding proof, it is easy to understand that it is

also the possibility to prune the search path 𝑃𝑞
′). In fact, when 𝑃𝑞 is more similar to 𝑃𝑞

′,

𝑃𝑞
′ is more likely to be pruned. δ simulates this trend with very good effect. So we

use it as a probability to prune the path 𝑃𝑞
′.

5 Experiments

5.1 Setup

Dataset. We perform the experiments on DBPedia, a popular real-world RDF da-

taset which contains over two million entities and nearly ten million relationships.

From DBPedia, we extract a schema graph with 272 class nodes, such as “Aircraft”,

“BaseballPlayer”, “ChemicalCompound”, etc. and nearly 20K edges. Our keyword

query interpretation approach is to search for pattern trees on the schema graph and

generate diverse patterns covering various classes.

Metrics. To evaluate the effectiveness of our approach, we introduce the following

two metrics.

 Coverage. Each top-k pattern tree could be a representative of many other similar

patterns. Thus, we try to count how many patterns are covered by (namely, similar

to) the top-k pattern trees, which is a reasonable measure of their diversity. Certain-

ly, the more pattern trees covered by the top-k results, the more diverse the results.

Formally, we define the coverage of diversified top-k results 𝑆𝑘 as

 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑘) =
|{𝑇∈𝑆,𝐿𝑇∈𝑆𝑘|𝑠𝑐𝑜𝑟𝑒(𝑇)≥𝑠𝑐𝑜𝑟𝑒(𝐿𝑇)}|

|𝑆𝑘|
 (5)

where 𝑆 is the result set including all the pattern trees once generated and 𝐿𝑇 is the

last pattern tree in 𝑆𝑘.

 Precision. Since our probabilistic pruning method could result in losses of exact

top-k results, we evaluate the effectiveness of pruning method by using the preci-

sion of top-k results, namely, the percentage of “correct” top-k results that are also

returned by the original algorithm. Formally, we define the precision of top-k re-

sults 𝑆𝑘 as

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑆𝑘) =
|{𝑃∈𝑆𝑘|𝑃∈𝑆𝑘

′}|

|𝑆𝑘|
 (6)

where 𝑆𝑘
′ is the set of exact top-k results corresponding to 𝑆𝑘.

5.2 Effectiveness

Test 1. We firstly evaluate the effectiveness in the sense of coverage. We test 50

random keyword queries that have two or three keywords respectively, with 𝑘 = 10

and varying values of τ. As shown in Figure 3, the value of coverage increases

Diversified Top-k Keyword Query Interpretation on Knowledge Graphs 11

(a) Coverage of 𝑆𝑘 with |Q|=2. (b) Coverage of 𝑆𝑘 with |Q|=3.

Fig. 3. Coverage of 𝑺𝒌.

significantly with the decrease of τ. For example, when τ = 0.8, there are averagely

4655 pattern trees represented by our diversified top-10 results of two-keyword que-

ries. Moreover, if the queries have more keywords, the coverage of diversified top-k

results is even higher, because there are more redundant pattern trees combined from

similar paths.

Test 2. We also evaluate the effectiveness by conducting a user case study. Given a

query “Beckham, Ronaldo”, Table 2 shows the top-5 results without diversification

and Table 3 shows the top-5 results of DivSA with τ = 0.9. We can see that, the top-1

result without diversification is indeed the most desired semantic relationship between

these two famous soccer players, namely, another soccer player who is the teammate

of both. However, the other 4 results are all about soccer player, though they are

slightly different. In contrast, the results of DivSA reveal rich semantics between the

two keywords. Thus, if some users are interested in “Beckham” as an album and

“Ronaldo” as a musical artist, they will find out that the album and the artist share

some sort of musical genre. Thus, our approach can indeed improve the search results

in human sense.

Table 2. A user case study: the top-5 results without diversification.

Root Paths

Soccer Player Soccer Club—Soccer Player(Beckham)

Soccer Club—Soccer Player(Ronaldo)

Soccer Player Soccer Club—Soccer Player—Person(Beckham)

Soccer Club—Soccer Player(Ronaldo)

Soccer Player Soccer Club—Soccer Player—Album(Beckham)

Soccer Club—Soccer Player(Ronaldo)

Soccer Player Soccer Club—Soccer Player(Beckham)

Soccer Club—Stadium(Ronaldo)

Soccer Player Soccer Club—Soccer Player—Person(Beckham)

Soccer Club--Stadium(Ronaldo)

12 Y. Wang, M. Zhong et al.

Table 3. A user case study: the top-5 results of DivSA.

Root Paths

Soccer Player Soccer Club—Soccer Player(Beckham)

Soccer Club—Soccer Player(Ronaldo)

Broadcast Network Country—Administrative Region—Settlement(Beckham)

Country—Administrative Region—School(Ronaldo)

Music Genre Album(Beckham)

Musical Artist(Ronaldo)

Book Language—Book(Beckham)

Country—Administrative Region—School(Ronaldo)

Record Label Album(Beckham)

Country—Administrative Region—School(Ronaldo)

5.3 Efficiency

We compare the efficiency of two algorithms: DivSA1 and DivSA2. DivSA1 is our

diversified top-k search algorithm DivSA using Rule 1 for pruning. DivSA2 is the

DivSA using both Rule 1 and 2 for pruning.

We test 50 random keyword queries with two or three keywords respectively by

using each algorithm with varying values of parameters. The followings are our ob-

servations.

1. Figure 4 depict the average response time of all algorithms with τ=0.9, μ = 0.5 and

𝑘 = 20, 40, … , 100 for queries with two and three keywords respectively. In most

of the time, DivSA1 can find the top-k results within tens of seconds, since it re-

duces the overheads of calculating similarity significantly. Moreover, the opti-

mized DivSA2 is more efficient than DivSA1. Specifically, DivSA2 is averagely

2.43 and 2.92 times faster than DivSA1 when the keyword number is 2 and 3 re-

spectively. It verifies the effectiveness of our pruning strategy.

With the increase of the value of 𝑘, the response time of both DivSA1 and DivSA2

increases sub-linearly.

With the increase of the keyword number in query, the response time of both

DivSA1 and DivSA2 increases rapidly, due to the explosive combinations of paths.

Thus, keyword query cleaning is useful when there are many keywords.

2. Figure 5 demonstrate the effectiveness of pruning. Generally, we can see that the

number of search paths is reduced significantly by pruning. For the queries with

two keywords, 66% of search paths are pruned. For the queries with three key-

words, 59% of search paths are pruned. Meanwhile, although the pruning is heuris-

tic, the precision is testified to be quite high.

3. Since our heuristic pruning is not guaranteed to be safe, we need to testify the pre-

cision of returned results. Table 4 shows the average precision of top-k results of

DivSA2. We can see that the average precision is generally higher than 95%. Thus,

although DivSA2 improves the efficiency dramatically by using unsafe pruning, it

is still reliable with respect to the precision of top-k results.

Diversified Top-k Keyword Query Interpretation on Knowledge Graphs 13

(a) Average response time |Q|=2 (b) Average response time |Q|=3

Fig. 4. Average response time.

(a) Pruning |Q|=2 (b) Pruning |Q|=3

Fig. 5. Pruning effectiveness of DivSA2.

Table 4. Precision of the top-k results returned by DivSA2.

 k=20 k=40 k=60 k=80 k=100

|𝑄| = 2 0.975 0.98295 0.96842 0.97045 0.97545

|𝑄| = 3 0.98667 0.965 0.96667 0.96667 0.95286

6 Conclusion

In this paper, we study the problem of diversified top-k keyword query interpretation

on knowledge graphs. Firstly, we define the problem as diversified top-k search on a

schema graph. An effective similarity measure is proposed to evaluate the semantic

similarity between search results. Then, we present an efficient search algorithm that

guarantees to return the exact top-k results and minimize the calculation of similarity.

In order to further optimize the algorithm, we propose two heuristic pruning strate-

14 Y. Wang, M. Zhong et al.

gies. Lastly, we perform experiments on a real-world knowledge graph to verify the

effectiveness and efficiency of our approach.

Acknowledgments

This work was supported by National Natural Science Foundation of China under

contracts 61202036, 61572376, 61502349, and 61272110, and by Wuhan Morning

Light Plan of Youth Science and Technology under contract 2014072704011250.

References

1. Agrawal R., Gollapudi S., Halverson A., Ieong S.: Diversifying search results. In: WSDM,

pp. 5-14. (2009).

2. Angel A., Koudas N.: Efficient diversity-aware search. In: SIGMOD, pp. 781-792. (2011).

3. Auer S., Bizer C., Kobilarov G., Lehmann J., Cyganiak R., Ives Z.: Dbpedia: A nucleus for

a web of open data. In: ISWC/ASWC, pp. 722-735. (2007).

4. Bollacker K., Evans C., Paritosh P., Sturge, T., Taylor J.: Freebase: A collaboratively cre-

ated graph database for structuring human knowledge. In: SIGMOD, pp. 1247–1250.

(2008).

5. Pound J., IIyas I.F., Weddell G.: Expressive and flexible access to web-extracted data: A

keyword-based structured query language. In: SIGMOD, pp. 423-434. (2010).

6. Pound J., Hudek A.K., IIyas I.F., Weddell G.: Interpreting keyword queries over web

knowledge bases. In: CIKM, pp. 305–314. (2012).

7. Qin L., Yu J.X., Chang L.: Diversifying top-k results. In: VLDB, pp. 1124-1135. (2012).

8. Suchanek F.M., Kasneci G., Weikum G.: Yago: A core of semantic knowledge unifying

wordnet and wikipedia. In: WWW, pp. 697–706. (2007).

9. Tran T., Cimiano P., Rudolph S., Studer R.: Ontology-based interpretation of keywords for

semantic search. In: ISWC, pp. 523–536. (2007).

10. Tran T., Wang H., Rudolph S., Cimiano P.: Top-k Exploration of Query Candidates for Ef-

ficient Keyword Search on Graph-Shaped (RDF) Data. In: ICDE, pp. 405-419. (2009).

11. Wu W., Li H., Wang H., Zhu K.: Probase: A probabilistic taxonomy for text understand-

ing. In: SIGMOD, pp. 481–492. (2012).

12. Wu Y., Yang S., Srivatsa M., Iyengar A., Yan X.: Summarizing answer graphs induced by

keyword queries. In: VLDB, pp. 1774–1785. (2013).

13. Zeng Z., Bao Z., Le T.N., Lee M.L., Ling W.T.: ExpressQ: Identifying keyword context

and search target in relational keyword queries. In: CIKM, pp. 31–40. (2014).

14. Zhao F., Zhang X., Tung A.K.H., Chen G.: BROAD: Diversified keyword search in data-

bases. In: VLDB, pp. 1355-1358. (2011).

15. Zhou Q., Wang C., Xiong M., Wang H., Yu Y.: Spark: Adapting keyword query to seman-

tic search. In: ISWC, pp. 694–707. (2007).

16. Garbonell J.G. and Goldstein J.: The use of MMR, diversity-based reranking for reorder-

ing documents and producing summaries. In: SIGIR, pp. 335-336. (1998).

17. Demidova E., Fankhauser P., Zhou X. and Nejdl W.: DivQ: diversification for keyword

search over structured databases. In: SIGIR, pp. 331-338. (2010).

18. Golenberg K., Kimelfeld B. and Sagiv Y.: Keyword proximity search in complex data

graphs. In: SIGMOD, pp. 927-940. (2008).

